Effective Computation of Rational Approximants and Interpolants
نویسندگان
چکیده
This paper considers the problem of effective algorithms for some problems having structured coefficient matrices. Examples of such problems include rational approximation and rational interpolation. The corresponding coefficient matrices include Hankel, Toeplitz and Vandermonde-like matrices. Effective implies that the algorithms studied are suitable for implementation in either a numeric environment or else a symbolic environment. The paper includes two algorithms for the computation of rational interpolants which are both effective in symbolic environments. The algorithms use arithmetic that is free of fractions but at the same time control the growth of coefficients during intermediate computations. One algorithm is a look–around procedure which computes along a path of closest normal points to an offdiagonal path while the second computes along an arbitrary path using a look–ahead strategy. Along an antidiagonal path the look–ahead recurrence is closely related to the Subresultant PRS algorithm for polynomial GCD computation. Both algorithms are an order of magnitude faster than alternative methods which are effective in symbolic environments.
منابع مشابه
Fraction-Free Computation of Matrix Rational Interpolants and Matrix GCDs
We present a new set of algorithms for computation of matrix rational interpolants and one-sided matrix greatest common divisors. Examples of these interpolants include Padé approximants, Newton–Padé, Hermite–Padé, and simultaneous Padé approximants, and more generally M-Padé approximants along with their matrix generalizations. The algorithms are fast and compute all solutions to a given probl...
متن کاملError formulas for multivariate rational interpolation and Pad6 approximation
The univariate error formulas for Pad6 approximants and rational interpolants, which are repeated in Section 2, are generalized to the multivariate case in Section 4. We deal with "general order" multivariate Pad~ approximants and rational interpolants, where the numerator and denominator polynomials as well as the equations expressing the approximation order, can be chosen by the user of these...
متن کاملConvergence of Rational Interpolants∗
The convergence of (diagonal) sequences of rational interpolants to an analytic function is investigated. Problems connected with their definition are shortly discussed. Results about locally uniform convergence are reviewed. Then the convergence in capacity is studied in more detail. Here, a central place is taken by a theorem about the convergence in capacity of rational interpolants to funct...
متن کاملThe linear pencil approach to rational interpolation
It is possible to generalize the fruitful interaction between (real or complex) Jacobi matrices, orthogonal polynomials and Padé approximants at infinity by considering rational interpolants, (bi-)orthogonal rational functions and linear pencils zB − A of two tridiagonal matrices A, B, following Spiridonov and Zhedanov. In the present paper, beside revisiting the underlying generalized Favard t...
متن کاملOn the size of multivariate polynomial lemniscates and the convergence of rational approximants
In a previous paper, the author introduced a class of multivariate rational interpolants, which are called optimal Padé-type approximants (OPTA). The main goal of this paper is to extend classical results on convergence both in measure and in capacity of sequences of Padé approximants to the multivariate case using OPTA. To this end, we obtain some estimations of the size of multivariate polyno...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Reliable Computing
دوره 6 شماره
صفحات -
تاریخ انتشار 2000